LCoS顯示屏通常分為兩大類:透射型和反射型。雖然它們幾何光學(xué)原理上截然迥異,但都能有選擇地調(diào)制外光源光線而形成圖像。透射型首先在晶片上完成驅(qū)動(dòng)控制電路的設(shè)計(jì)制作,再用剝離(lift-off)技術(shù)[3]或各向異性刻蝕(anisotropic etching)技術(shù)[4]分離出管芯,粘附到透明襯底上制成微顯芯片。如此巧妙設(shè)計(jì)一方面是利用單晶硅的優(yōu)質(zhì)電學(xué)性能,另一方面則是利用成熟的IC設(shè)計(jì)制造技術(shù)。反射型則是直接在晶片上制作驅(qū)動(dòng)電路和顯示矩陣電路,然后以此為基底封裝液晶材料形成類似傳統(tǒng)LCD(Liquid Crystal Display)結(jié)構(gòu)的平板顯示屏。所以常規(guī)IP技術(shù)可直接用于設(shè)計(jì)制作硅基液晶顯示屏。
圖2是筆者運(yùn)用Cadence EDA工具,采用0.6μm的n-阱四層金屬CMOS工藝規(guī)則設(shè)計(jì)的反射式LCoS(VGA分辨率,時(shí)序彩色化)電路結(jié)構(gòu)圖。其電路可劃分為行掃描驅(qū)動(dòng)器,列數(shù)據(jù)輸入驅(qū)動(dòng)器(包含DAC電路)和顯示驅(qū)動(dòng)矩陣(有源NMOS矩陣)[5]。
在列數(shù)據(jù)輸入驅(qū)動(dòng)器中,串行輸入的多位數(shù)字視頻信號(hào)通過(guò)移位寄存器的作用,依次存入數(shù)字鎖存器,然后在同一讀出信號(hào)作用下,配合行掃描信號(hào),同時(shí)輸入到各列的數(shù)/模轉(zhuǎn)換器(DAC),之后輸出模擬電壓信號(hào)作用到像素,因此一幀圖像將被一次一行地傳送到所有列。
在行掃描驅(qū)動(dòng)器中,行掃描信號(hào)通過(guò)另一組移位寄存器作用,產(chǎn)生與數(shù)字視頻信號(hào)同步的逐行掃描信號(hào)。
有源顯示驅(qū)動(dòng)矩陣的每一個(gè)像給包括像素開(kāi)關(guān)(NMOS晶體管)、存儲(chǔ)電容和在它們上面的鋁反射電極。NMOS晶體管控制列數(shù)據(jù)線對(duì)液晶像素的充電,而存儲(chǔ)電容中的充電電荷建立了相對(duì)于控制電極的電壓差。由于液晶材料本身也有電容,并沿分子的取向充電,當(dāng)一定量的電荷積聚在像素上時(shí),液晶將按所施加的電場(chǎng)取向。液晶分子的再取向,導(dǎo)致液晶電容的變化,這就改變了加在像素的電壓。為了解決這個(gè)問(wèn)題,需要用較大的存儲(chǔ)電容。
像素的截面如圖3所示,采用了四層金屬,分別用于掃描線、數(shù)據(jù)線、避光層和鋁反射鏡面電極。掃描線控制NMOS晶體管(像素開(kāi)關(guān))的柵極,當(dāng)NMOS導(dǎo)通時(shí)數(shù)據(jù)線上的信號(hào)驅(qū)動(dòng)到像素上。晶體管漏極,存儲(chǔ)電容和反射鏡面電極是電導(dǎo)通的。硅背板頂部制作1μm厚的液晶襯墊,用以確定液晶盒間隙。
整個(gè)硅背板都是在常規(guī)IC芯片生產(chǎn)線上完成的。在加工好的LCoS顯示芯片上,覆蓋取向?qū)樱可厦芊饽z,粘合附著ITO電極的玻璃蓋板,最后向這個(gè)液晶盒灌注液晶材料就形成了LCoS顯示器。盡管LCoS顯示芯片的面積比較大,但絕大部分是像素陣列,晶體管密度較低,故可得到高的成品率。采用現(xiàn)代IC制造技術(shù)生產(chǎn)LCoS顯示器可謂駕輕就熟,也是制造高分辨率LCD顯示器的一條降低成本途徑。