1.2 電路板(PCB)設(shè)計
為保證整個頻帶內(nèi)信號放大的一致性,降低雜波和諧波的影響,寬頻帶高功率射頻放大器采用了AB類功率放大,以保證電路的對稱性。在設(shè)計PCB時,盡量保證銅膜走線的形式對稱,長度相同。為便于PcB板介電常數(shù)的選取,整個PCB板為鉛錫光板。在信號輸入和輸出端使用了Smith圓圖軟件計算和仿真銅膜走線的形狀、尺寸,以確保阻抗特性良好匹配。
設(shè)計中的關(guān)鍵技術(shù)之一就是傳輸線變壓器的設(shè)計和制作。利用傳輸線阻抗變換器可以完成信號源與功率MOSFET管輸入端或輸出端之間的阻抗匹配?梢宰畲笙薅鹊乩霉茏颖旧淼膸挐撃。傳輸線變壓器在設(shè)計使用上有兩點必須注意:一是源阻抗、負(fù)載阻抗和傳輸線阻抗的匹配關(guān)系;二是輸入端和輸出端必須滿足規(guī)定的連接及接地方式。由于設(shè)計中采用了AB類功率放大方式,因此初級線圈的輸入與次級線圈的輸出要盡可能保證對稱。設(shè)計中一共使用了T1、T2、T3、T4 4個傳輸線變壓器。在前兩級功率放大時,T1和T2的次級線圈都是一圈,T3的次級線圈是二圈,這是因為磁材料的飽和經(jīng)常發(fā)生在低頻端,增加T3的初、次級線圈數(shù),有利于改善低頻端性能。T1、T2、T3使用同軸線SFF-1.5-1的芯線作為初級線圈傳輸線,次級線圈采用銅箔材料設(shè)計,使用厚度為O.8mm的銅箔。T4為進(jìn)口外購的高功率傳輸線變壓器(型號:RF2067-3R)。設(shè)計的T1如圖2所示。
圖2
圖2中深色區(qū)域代表覆銅區(qū)域。銅箔管首先穿過磁環(huán)后再穿過兩端的銅膜板并焊接在一起,完成次級線圈。T2的設(shè)計基本與Tl相似,只是使用同軸線SFF-1.5-l的芯線纏繞的初級線圈圈數(shù)不同而已。
73次級線圈的制作有些變化,目的是加強低頻信號的通過程度。不使用銅箔管,而使用銅箔彎曲成弧形。如圖3所示。
圖3
在每個磁環(huán)孔中穿過兩個銅箔片,分別與兩端的銅膜板焊接,這樣整個線圈的次級線圈就是兩圈,然后根據(jù)阻抗比完成初級線圈的纏繞。這樣做的目的是在固定的阻抗比的情況下增加初、次級的圈數(shù)以改善放大器的低頻特性。
1.3 散熱設(shè)計
凡是射頻功率放大,其輸出功率很大,管子的功耗也大,發(fā)熱量非常高,因此必須對管子散熱。根據(jù)每一級管子的功耗PD以及管子的熱特性指標(biāo),這些熱指標(biāo)包括器件管芯傳到器件外殼的熱阻ROJC,器件允許的結(jié)溫為T1、工作環(huán)境溫度為TA等,可以計算出需要使用的散熱材料的尺寸大小和種類。本設(shè)計中,器件的工作環(huán)境溫度為55℃,使用的鋁質(zhì)散熱片尺寸為290mm×110mm×35mm,而且需要使用直流風(fēng)機對最后一級MOSFET進(jìn)行散熱處理。